7.3

CONCENTRATION OF ACIDS
AND ALKALIS

QUESTION 1

The concentration of a solution refers to

A the quantity of solute in a given volume of solution
B the amount of water in a given volume of solution
C the quantity of hydrogen ions in a given volume of solution
D the quantity of hydroxide ions in a given volume of solution

QUESTION 2

The molarity of a solution is the

A number of grams of solute present in the solution
B number of ions present in $1 \mathrm{dm}^{3}$ of the solution
C number of molecules present in $1 \mathrm{dm}^{3}$ of the solution
D number of moles of solute present in $1 \mathrm{dm}^{3}$ of the solution

QUESTION 3

A student dissolves 40 g of sodium hydroxide, NaOH , in water to make a $500 \mathrm{~cm}^{3}$ of solution. Calculate the concentration of the solution in $\mathrm{g} \mathrm{dm}^{-3}$.
A 0.08
B 20
C 40
D 80

QUESTION 4

A student prepares a solution by dissolving 0.35 mol of sodium chloride in distilled water to make a $200 \mathrm{~cm}^{\mathbf{3}}$ of solution. Calculate the molarity of the solution.
A $\quad 5.7 \mathrm{~mol} \mathrm{dm}{ }^{-3}$
C
$0.75 \mathrm{~mol} \mathrm{dm}^{-3}$
B $\quad 7.5 \mathrm{~mol} \mathrm{dm}^{-3}$
D $\quad 1.75 \mathrm{~mol} \mathrm{dm}^{-3}$

QUESTION 5

The molarity of a bottle of potassium hydroxide solution is $1.5 \mathrm{~mol} \mathrm{dm}^{-3}$. What is the concentration of the solution in $\mathbf{g ~ d m}^{-3}$?
[Relative atomic mass: $\mathrm{K}, 39$; $\mathrm{H}, 1 ; \mathrm{O}, 16$]
A 25
C
84
B 50
D 90

QUESTION 6

The concentration of a sodium hydroxide solution is $8 \mathbf{~ g ~ d m}^{-3}$. Calculate the molarity of the solution.
[Relative atomic mass: $\mathrm{Na}, 23 ; \mathrm{O}, 16 ; \mathrm{H}, 1]$
A
$0.1 \mathrm{~mol} \mathrm{dm}^{-3}$
C
$0.3 \mathrm{~mol} \mathrm{dm}^{-3}$
B $\quad 0.2 \mathrm{~mol} \mathrm{dm}^{-3}$
D $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$

QUESTION 7

The concentration of a solution of calcium hydroxide is $0.2 \mathrm{~mol} \mathrm{dm}^{-3}$. Find the number of moles of calcium hydroxide in $25.0 \mathrm{~cm}^{3}$ of calcium hydroxide solution.
A $\quad 0.5 \mathrm{~mol}$
C
0.0375 mol
B $\quad 0.005 \mathrm{~mol}$
D $\quad 0.0005 \mathrm{~mol}$

QUESTION 8

Which of the following is true about the relationship between the pH value of an alkali and its molarity?

Molarity of alkali
 pH value

A
B
C
D

Increases
Increases
Decreases
Decreases

Decreases
Increases
Not affected
Increases

QUESTION 9

Which of the following is true?
I A standard solution is a solution in which its concentration is accurately known.
II A standard solution is prepared using a volumetric flask.
III Pure anhydrous sodium carbonate is usually used to make a standard alkaline solution.
IV Hydrochloric acid is usually used to make a standard acidic solution
$\begin{array}{llll}\text { A } & \text { I and II only } & \text { C } & \text { I, II and III only } \\ \text { B } & \text { II and IV only } & \text { D } & \text { I, III and IV only }\end{array}$

QUESTION 10

Find the volume of $2.0 \mathbf{~ m o l ~ d m}^{-3}$ sulphuric acid needed to be diluted to make $200 \mathrm{~cm}^{3}$ of $1.0 \mathbf{~ m o l ~ d m}^{-3}$ sulphuric acid.
A $\quad 50 \mathrm{~cm}^{3}$
C
$200 \mathrm{~cm}^{3}$
B $\quad 100 \mathrm{~cm}^{3}$
D $\quad 400 \mathrm{~cm}^{3}$

QUESTION 11

Which of the following contains the most of hydrogen ions?

A $\quad 400 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ sulphuric acid
B $\quad 700 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid
C $\quad 600 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ hydrochloric acid
D $400 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ sodium hydroxide

QUESTION 12

The $\mathbf{p H}$ value of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid is higher than that of $\mathbf{1 ~ m o l ~ d m}{ }^{-3}$ hydrochloric acid. This is because ethanoic acid

A ionises only partially in water
B ionises completely in water
C has a higher concentration of hydrogen ions
D has a higher concentration of hydroxide ions

QUESTION 13

$100 \mathrm{~cm}^{3}$ of distilled water is added to $400 \mathrm{~cm}^{3}$ of $2.0 \mathbf{~ m o l ~ d m}^{-3}$ of hydrochloric acid. What is the concentration in $\mathrm{mol} \mathrm{dm}^{-3}$, of the diluted solution?
A 1.6
B 1.8
$\begin{array}{ll}\text { C } & 2.0 \\ \text { D } & 2.5\end{array}$

QUESTION 14

What is the volume of distilled water that is needed to be added to 8 g of sodium hydroxide to make $0.4 \mathbf{~ m o l ~ d m}^{-3}$ sodium hydroxide solution?
[Relative atomic mass: $\mathrm{Na}, 23 ; \mathrm{H}, 1 ; \mathrm{O}, 16]$
A $\quad 2 \mathrm{dm}^{3}$
C
$0.2 \mathrm{dm}^{3}$
B $\quad 0.5 \mathrm{dm}^{3}$
D $\quad 0.08 \mathrm{dm}^{3}$

QUESNWN

The table shows the volume, concentration and pH value of two acids.

Acid	Volume and concentration	$\mathbf{p H}$
Hydrochloric acid	$50 \mathrm{~cm}^{3}$ of 1 mol dm	-3
Ethanoic acid	$50 \mathrm{~cm}^{3}$ of 1 mol dm	

Why is there a difference in $\mathbf{p H}$ value between the two acids?

A The number of moles of ethanoic acid is less than of hydrochloric acid.
B Ethanoic acid is more soluble in water than hydrochloric acid.
C The degree of ionisation of ethanoic acid is less than that of hydrochloric acid.
D The concentration of hydrogen ions is higher in ethanoic acid than in hydrochloric acid.

ANSWERS

1	A	6	B	11	A
2	D	7	B	12	A
3	D	8	B	13	A
4	D	9	C	14	B
5	C	10	B	15	C

