7.3 CONCENTRATION OF ACIDS AND ALKALIS

The concentration of a solution refers to

- A the quantity of solute in a given volume of solution
- B the amount of water in a given volume of solution
- C the quantity of hydrogen ions in a given volume of solution
- D the quantity of hydroxide ions in a given volume of solution

The molarity of a solution is the

- A number of grams of solute present in the solution
- B number of ions present in 1 dm³ of the solution
- C number of molecules present in 1dm³ of the solution
- D number of moles of solute present in 1 dm³ of the solution

A student dissolves 40g of sodium hydroxide, NaOH, in water to make a 500 cm³ of solution. Calculate the concentration of the solution in g dm⁻³.

 $A \qquad 0.08$

C 40

B 20

D 80

A student prepares a solution by dissolving 0.35 mol of sodium chloride in distilled water to make a 200 cm³ of solution. Calculate the molarity of the solution.

A 5.7 mol dm^{-3}

 $C = 0.75 \text{ mol dm}^{-3}$

B 7.5 mol dm⁻³

D 1.75 mol dm⁻³

The molarity of a bottle of potassium hydroxide solution is 1.5 mol dm⁻³. What is the concentration of the solution in g dm⁻³?

[Relative atomic mass: K, 39; H, 1; O, 16]

A 25

C = 84

B 50

D 90

The concentration of a sodium hydroxide solution is 8 g dm⁻³. Calculate the molarity of the solution.

[Relative atomic mass: Na, 23; O, 16; H, 1]

A 0.1 mol dm^{-3}

C 0.3 mol dm⁻³

B 0.2 mol dm^{-3}

D 0.5 mol dm^{-3}

The concentration of a solution of calcium hydroxide is 0.2 mol dm⁻³. Find the number of moles of calcium hydroxide in 25.0 cm³ of calcium hydroxide solution.

A = 0.5 mol

C 0.0375 mol

B 0.005 mol

D 0.0005 mol

Which of the following is true about the relationship between the pH value of an alkali and its molarity?

	Molarity of alkali	pH value
A	Increases	Decreases
В	Increases	Increases
C	Decreases	Not affected
D	Decreases	Increases

Which of the following is true?

- I A standard solution is a solution in which its concentration is accurately known.
- II A standard solution is prepared using a volumetric flask.
- III Pure anhydrous sodium carbonate is usually used to make a standard alkaline solution.
- IV Hydrochloric acid is usually used to make a standard acidic solution

A	I and II only	\mathbf{C}	I, II and III only
В	II and IV only	D	I, III and IV only

Find the volume of 2.0 mol dm⁻³ sulphuric acid needed to be diluted to make 200 cm³ of 1.0 mol dm⁻³ sulphuric acid.

 $200 \, \text{cm}^3$

A 50 cm^3

B 100 cm^3 D 400 cm^3

Which of the following contains the most of hydrogen ions?

- A 400 cm³ of 1 mol dm⁻³ sulphuric acid
- B 700 cm³ of 1 mol dm⁻³ ethanoic acid
- C 600 cm³ of 1 mol dm⁻³ hydrochloric acid
- D 400 cm³ of 1 mol dm⁻³ sodium hydroxide

The pH value of 1 mol dm⁻³ ethanoic acid is higher than that of 1 mol dm⁻³ hydrochloric acid. This is because ethanoic acid

- A ionises only partially in water
- B ionises completely in water
- C has a higher concentration of hydrogen ions
- D has a higher concentration of hydroxide ions

100 cm³ of distilled water is added to 400 cm³ of 2.0 mol dm⁻³ of hydrochloric acid. What is the concentration in mol dm⁻³, of the diluted solution?

A 1.6

B 1.8

C 2.0

D 2.5

What is the volume of distilled water that is needed to be added to 8 g of sodium hydroxide to make 0.4 mol dm⁻³ sodium hydroxide solution?

[Relative atomic mass: Na, 23; H, 1; O, 16]

A $2 \, dm^3$

 $C = 0.2 \text{ dm}^3$

B $0.5 \,\mathrm{dm}^3$

D $0.08 \, dm^3$

The table shows the volume, concentration and pH value of two acids.

Acid	Volume and concentration	pН
Hydrochloric acid	50 cm ³ of 1 mol dm ⁻³	1
Ethanoic acid	50 cm ³ of 1 mol dm ⁻³	3

Why is there a difference in pH value between the two acids?

- A The number of moles of ethanoic acid is less than of hydrochloric acid.
- B Ethanoic acid is more soluble in water than hydrochloric acid.
- C The degree of ionisation of ethanoic acid is less than that of hydrochloric acid.
- D The concentration of hydrogen ions is higher in ethanoic acid than in hydrochloric acid.

ANSWERS

1	Α	6	В	11	Α
2	D	7	В	12	Α
3	D	8	В	13	Α
4	D	9	С	14	В
5	С	10	В	15	С