7.4 NEUTRALISATION

Which of the following happens during neutralisation?

- I An acid loses its acidity.
- II An alkali gains its alkalinity.
- **III** The product is a neutral solution.
- IV A salt and water are the only product of neutralisation
- A I and II onlyB II and IV onlyC I, II and III onlyD I, III and IV only

Which of the following bases reacts with hydrochloric acid to form sodium chloride and water?

- A Copper oxide
- B Sodium carbonate
- C Sodium hydroxide
- D Calcium hydroxide

Ant bites are acidic in nature. What would you use to treat ant bites?

- A Vinegar
- B Orange juice
- C Lime juice
- D Baking powder

Why is a base such as aluminium hydroxide used as a component of toothpaste?

- A It helps to whiten teeth.
- B It helps to strengthen teeth.
- C It kills the bacteria in the mouth.
- D It prevents tooth decay by neutralise the acids produced by bacteria in the mouth

We know that the end point of the titration has been reached when the

- A indicator changes colour
- B conductivity of the solution in the conical flask increases
- C conductivity of the solution in the conical flask decreases
- D when half the volume of the solution in the burette has been added to the solution in the conical flask

31.25 cm³ of hydrochloric acid of unknown concentration is needed to exactly neutralise 25.0 cm³ of 0.1 mol dm⁻³ sodium hydroxide solution. Calculate the concentration of the hydrochloric acid, in mol dm⁻³.

A	0.08	С	0.18
В	0.81	D	0.85

Calculate the number of moles of water that is produced when 25 cm³ of 1 mol dm⁻³ of sodium hydroxide is exactly neutralised by sulphuric acid.

- A 0.025 mol
- B 0.25 mol
- C 0.05 mol
- D 0.5 mol

25 cm³ of hydrochloric acid exactly neutralise 20 cm³ of 0.5 mol dm⁻³ sodium hydroxide. Calculate the concentration, in mol dm⁻³, of the hydrochloric acid used.

A0.2C0.6B0.4D0.8

Sulphuric acid reacts with ammonia solution according to the equation

 $2 \text{ NH}_3 + \text{H}_2 \text{SO}_4 \longrightarrow (\text{NH}_4)_2 \text{SO}_4$ Find the concentration of the sulphuric acid if 20 cm^3 of the acid is used to exactly neutralise 25 cm^3 of 1 mol dm⁻³ ammonia solution.

 A
 0.125 mol dm⁻³
 C
 0.625 mol dm⁻³

 B
 0.225 mol dm⁻³
 D
 1.25 mol dm⁻³

Which of the following equations represents a neutralisation reaction?

- I HCl + NaOH \longrightarrow NaCl + H₂O
- II $NH_3 + HCl \longrightarrow NH_4Cl$
- III $2HNO_3 + Ca(OH)_2 \longrightarrow Ca(NO_3)_2 + 2H_2O$
- IV $CaCO_3 + 2HCI \longrightarrow CaCl_2 + H_2O + CO$
- A I and II onlyB II and IV onlyC I, II and III onlyD I, III and IV only

A few drops of sodium hydroxide is added to a solution of sodium chloride. The pH of the resulting solution is most probably.

- B 5
- C 7

D 12

20 cm³ of 2.0 mol dm⁻³ acid *X* is required to exactly neutralise 20 cm³ of 0.4 mol dm⁻³ sodium hydroxide solution. Acid *X* is most probably

- A nitric acid
- B sulphuric acid
- C hydrochloric acid
- D methanoic acid

The equation for the reaction between nitric acid and calcium hydroxide is

 $2 \text{ HNO}_3 + \text{Ca}(\text{OH})_2 \longrightarrow \text{Ca}(\text{NO}_3)_2 + 2 \text{ H}_2\text{O}$ In an acid-base titration, 0.2 mol dm⁻³ nitric acid is added slowly into 25 cm³ of 0.1 mol dm⁻³ calcium hydroxide solution. The initial reading of the burette is 10.0 cm³, find the final reading of the burette at the end of the titration.

A	15 cm^3	С	35 cm^3
В	20 cm^3	D	50 cm^3

A student diluted 15 cm³ of 0.2 mol dm⁻³ sodium hydroxide solution in a conical flask with 10 cm³ of distilled water before carrying out an acid-base titration with 0.5 mol dm⁻³ hydrochloric acid. Find the total volume of the solution in the conical flask at the end point of the titration.

A	6 cm^3	С	25 cm^3
В	15 cm ³	D	31 cm^3

Which of the following pairs of substances are reactants in a neutralisation reaction?

A	Copper sulphate	Hydrochloric acid
В	Nitric acid	Sulphuric acid
С	Copper (II) oxide	Sodium hydroxide
D	Ammonia solution	Hydrochloric acid

ANSWERS

1	D	6	A	11	D
2	С	7	A	12	В
3	D	8	В	13	С
4	D	9	С	14	D
5	A	10	С	15	D